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Abstract: In this paper we study the uniqueness of extremals satisfying first order necessary conditions for optimal
control problems involving endpoint and control constraints. In particular we show that, for such problems, a strict
Mangasarian-Fromovitz type constraint qualification does imply uniqueness of Lagrange multipliers but, contrary
to the corresponding equivalence in mathematical programming, the converse in optimal control may not hold.
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1 Introduction
It is well-known that, for nonlinear programming
problems involving equality and inequality con-
straints, a strict version of the Mangasarian-Fromovitz
constraint qualification (SMFCQ) is equivalent to the
uniqueness of multipliers satisfying the Karush-Kuhn-
Tucker conditions (or first order Lagrange multiplier
rule). Moreover, that strict constraint qualification im-
plies the satisfaction of second order necessary opti-
mality conditions on a critical cone which takes into
account the sign of the multipliers.

For the statement on uniqueness of multipliers we
refer the reader to [1, 3, 4, 6, 9], while the result on
necessary conditions can be seen with detail in [2, 6,
8, 9].

The equivalence between uniqueness of multipli-
ers and the SMFCQ was first established in [9] and has
been widely quoted (see, for example, [1, 3, 4–6, 12–
14] and references therein). The proof of that result,
found in [9], is strongly based on yet another equiva-
lence between the Mangasarian-Fromovitz constraint
qualification (MFCQ) and normality relative to the
original set of constraints, a crucial result which has
been proved by Hestenes [8] or, as mentioned in [6,
9], by using theorems of alternative (see Motzkin in
[6, Theorem 2.4.19]). Here, the notion of normality is
used in the sense that, if the cost multiplier vanishes in
the Fritz John necessary optimality condition, then the
only solution of the corresponding first order system
is the null solution. Thus, normality of a local mini-
mizer relative to the original set of constraints implies,
in the necessary optimality condition, a positive cost
multiplier.

Due to this last equivalence, the SMFCQ (which

is really the MFCQ applied to a subset of the set of
tangential constraints) is equivalent to normality rela-
tive to a subset of the original set of constraints which
depends on Lagrange multipliers given beforehand,
and includes inequalities when the multipliers vanish
and equalities otherwise.

In this paper, we shall deal with an optimal
control problem involving endpoint and control con-
straints, and pose the question of uniqueness of mul-
tipliers satisfying first order necessary conditions as a
consequence of a maximum principle.

As we shall see, the notion of normality follows
essentially the same principles as in the finite dimen-
sional case, and there is a natural correspondence with
the sets of constraints mentioned above. However, we
shall prove that, for this type of optimal control prob-
lems, uniqueness of the Lagrange multipliers and nor-
mality relative to the corresponding subset of the set
of original constraints are no longer equivalent.

2 Nonlinear programming

In this section, we shall give a brief summary of the
main results given in [9] relating the SMFCQ with
uniqueness of Lagrange multipliers and second order
necessary optimality conditions. This will help us to
clearly understand some of the main differences be-
tween the finite dimensional case and that of optimal
control.

Consider the problem, which we shall label (N),
of minimizing f on S, where f, gi:Rn → R (i ∈
A∪B) are given C1 functions, A = {1, . . . , p}, B =
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{p+ 1, . . . ,m}, and

S = {x ∈ Rn | gα(x) ≤ 0 (α ∈ A),

gβ(x) = 0 (β ∈ B)}.

Denote by Λ(f, x0) the set of all λ ∈ Rm

(whose components λ1, . . . , λm are the Kuhn-Tucker
or Lagrange multipliers) satisfying the Karush-Kuhn-
Tucker (KKT) conditions:

i. λα ≥ 0 and λαgα(x0) = 0 (α ∈ A).
ii. If F (x) := f(x) + 〈λ, g(x)〉 then F ′(x0) = 0.

Here, the function F is the standard Lagrangian, g is
the function mapping Rn to Rm whose components
are g1, . . . , gm, and 〈·, ·〉 is the standard inner product
in Rm so that 〈λ, g(x)〉 =

∑m
1 λigi(x).

Under a suitable constraint qualification, the KKT
conditions hold at a local minimum x0 of (N), that is,
if x0 affords a local minimum to f on S and a con-
straint qualification holds, then Λ(f, x0) 6= ∅. It is
important to mention that, as shown in [6–8], if

I(x) = {α ∈ A | gα(x) = 0}

denotes the set of active indices at x, and

RS(x0) := {h ∈ Rn | g′α(x0;h) ≤ 0 (α ∈ I(x0)),

g′β(x0;h) = 0 (β ∈ B)}

is the set of vectors satisfying the tangential con-
straints at x0 (or the linearized tangent cone), then

Λ(f, x0) 6= ∅ ⇔ f ′(x0;h) ≥ 0 for all h ∈ RS(x0).

Constraint qualifications can also be seen as con-
ditions which assure the positiveness of the cost mul-
tiplier λ0 in the Fritz John necessary optimality con-
dition which states that, if x0 solves (N) locally, then
there exist λ0 ≥ 0 and λ ∈ Rm, not both zero, such
that

i. λα ≥ 0 and λαgα(x0) = 0 (α ∈ A).
ii. IfF0(x) := λ0f(x)+〈λ, g(x)〉 thenF ′0(x0) = 0.

Based on the theory of augmentability, a simple proof
of this result is provided in [10], while the proof given
in [6] uses Motzkin theorem of the alternative. It
yields in a natural way the following constraint quali-
fication.

We shall say that x ∈ S is normal relative to S if
λ = 0 is the only solution of

i. λα ≥ 0 and λαgα(x) = 0 (α ∈ A).
ii.
∑m

1 λig
′
i(x) = 0.

Clearly, the normality condition is a constraint quali-
fication since, in the Fritz John theorem, if x0 is also

a normal point of S, then λ0 > 0 and the multipli-
ers can be chosen so that λ0 = 1, thus implying that
Λ(f, x0) 6= ∅.

As shown in [6, 8], normality of a point x0 rela-
tive to S is equivalent to the Mangasarian-Fromovitz
constraint qualification at x0 with respect to S, which
requires the linear independence of the set

{g′β(x0) | β ∈ B}

and the existence of h such that

g′α(x0;h) < 0 (α ∈ I(x0)),

g′β(x0;h) = 0 (β ∈ B).

Now, suppose λ ∈ Λ(f, x0). Let

S1(λ) := {x ∈ S | F (x) = f(x)}.

Note that, if Γ = {α ∈ A | λα > 0}, then

S1 [ = S1(λ) ] =

{x ∈ Rn | gα(x) ≤ 0 (α ∈ A, λα = 0),

gβ(x) = 0 (β ∈ Γ ∪B)} =

{x ∈ S | gα(x) = 0 (α ∈ Γ)}.
Therefore

RS1(x0) =

{h ∈ Rn | g′α(x0;h) ≤ 0 (α ∈ I(x0), λα = 0),

g′β(x0;h) = 0 (β ∈ Γ ∪B)} =

{h ∈ RS(x0) | g′α(x0;h) = 0 (α ∈ Γ)} =

{h ∈ RS(x0) | f ′(x0;h) = 0}.

The strict Mangasarian-Fromovitz constraint
qualification at x0 corresponds to MFCQ at x0 with
respect to S1(λ). In other words, x0 ∈ Rn satisfies
the SMFCQ if the set

{g′β(x0) | β ∈ Γ ∪B}

is linearly independent, and there exists h such that

g′α(x0;h) < 0 (α ∈ I(x0), λα = 0),

g′β(x0;h) = 0 (β ∈ Γ ∪B).

Let us now state and give a (simple) proof of the
main result given in [9] relating the SMFCQ with the
uniqueness of Lagrange multipliers.

Theorem 1 Suppose λ ∈ Λ(f, x0). Then the follow-
ing are equivalent:

a. x0 satisfies SMFCQ.
b. λ is unique in Λ(f, x0).
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Proof: As mentioned before, (a) is equivalent to nor-
mality of x0 relative to S1(λ), that is, µ = 0 is the
only solution of

1. µα ≥ 0 and µαgα(x0) = 0 (α ∈ A, λα = 0).
2.
∑m

1 µig
′
i(x0) = 0.

(a)⇒ (b): Let λ̄ ∈ Λ(f, x0) and set µ := λ̄ − λ.
Then µ satisfies (1) and (2) since

µα = λ̄α ≥ 0,

µαgα(x0) = λ̄αgα(x0) = 0 (α ∈ A, λα = 0)

and, if F̄ (x) := f(x) + 〈λ̄, g(x)〉, then

0 = F̄ ′(x0)− F ′(x0) =
m∑
1

µig
′
i(x0).

By (a), µ = 0 and so λ = λ̄.

(b)⇒ (a): ∼(a)⇒∼(b): Assume x0 is not a nor-
mal point of S1(λ). Then there exists µ ∈ Rm, µ 6= 0,
satisfying (1) and (2) and such that

max{|µα| : α ∈ K} < min{λα : α ∈ K}
where

K = {α ∈ I(x0) | λα > 0}.
Let λ̂ := λ + µ. Let us prove that λ̂ ∈ Λ(f, x0)

implying ∼(b) since λ̂ 6= λ. Indeed, if

F̂ (x) := f(x) + 〈λ̂, g(x)〉,
then we have

F̂ ′(x0) = F ′(x0) +
m∑
1

µig
′
i(x0) = 0

and so (ii) in the definition of Λ(f, x0) holds. To prove
that also (i) holds, let α ∈ A. If gα(x0) = 0 then
λ̂αgα(x0) = 0. If gα(x0) < 0 then, by (i) with respect
to λ, we have λα = 0 and so, by (1),

0 = µαgα(x0) = λ̂αgα(x0).

Finally, if λα = 0, then λ̂α = µα ≥ 0. If λα > 0 then

λ̂α = λα + µα

≥ min
i∈K

λi + µα

> max
i∈K
|µi|+ µα ≥ 0.

If we assume that the functions delimiting the
problem are C2, second order necessary conditions
can be derived under the assumption of SMFCQ (or
normality relative to S1) at a local minimum of the
problem. A proof of this result can be found in [2, 8].

Theorem 2 Suppose x0 ∈ S and λ ∈ Λ(f, x0). If x0
solves (N) locally and is a normal point of S1(λ), then
F ′′(x0;h) ≥ 0 for all h ∈ RS1(x0).

3 Extremals and normality in opti-
mal control

The optimal control problem we shall deal with can
be stated as follows. Suppose we are given an interval
T := [t0, t1] in R, a point ξ0 ∈ Rn, and functions

(g, h):Rn → R×Rk (k ≤ n),

(L, f):T ×Rn ×Rm → R×Rn,

ϕ:Rm → Rq (q ≤ m).

Denote by X the space of piecewise C1 functions
mapping T to Rn, by Uk the space of piecewise con-
tinuous functions mapping T to Rk (k ∈ N), and set
Z := X × Um,

The set of endpoint constraints will be expressed
in terms of

C := {x ∈ Rn | h(x) = 0},

and the set of control constraints will be given by

U := {u ∈ Rm | ϕα(u) ≤ 0 (α ∈ R),

ϕβ(u) = 0 (β ∈ Q)}
where R = {1, . . . , r} and Q = {r + 1, . . . , q}.

Define the sets

D := {(x, u) ∈ Z | ẋ(t) = f(t, x(t), u(t)) (t ∈ T ),

x(t0) = ξ0, x(t1) ∈ C},
S := {(x, u) ∈ D | u(t) ∈ U (t ∈ T )},

and let I:Z → R be given by

I(x, u) := g(x(t1)) +

∫ t1

t0
L(t, x(t), u(t))dt.

The problem we shall deal with, which we label (P),
is that of minimizing I over S.

Elements of Z will be called processes, of S ad-
missible processes, and a process (x, u) solves (P) if
(x, u) is admissible and I(x, u) ≤ I(y, v) for all ad-
missible processes (y, v).

Given (x, u) ∈ Z we shall use the notation (x̃(t))
to represent (t, x(t), u(t)), and the symbol ‘∗’ will de-
note transpose.

With respect to the functions delimiting the prob-
lem, we assume that, if F := (L, f), then F (t, ·, ·)
is C1 for all t ∈ T and g, h, ϕ are C1; F (·, x, u),
Fx(·, x, u) and Fu(·, x, u) are piecewise continuous
for all (x, u) ∈ Rn × Rm; and there exists an in-
tegrable function α:T → R such that, at any point
(t, x, u) ∈ T ×Rn ×Rm,

|F (t, x, u)|+ |Fx(t, x, u)|+ |Fu(t, x, u)| ≤ α(t).
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These assumptions are standard for the derivation of
first order necessary conditions (see, for example,
[11]). Also, we assume that h′(x(t1)) (x ∈ X), and
the matrix (ϕ′i(u(t))) (i ∈ I(u(t))∪Q, t ∈ T ) are of
full rank, where

I(u) := {i ∈ R | ϕi(u) = 0}

denotes the set of active inequality indices.
For any x ∈ Rn let

N (x) := {p ∈ Rn | p = h′(x)∗γ for some γ ∈ Rk}.

Note that, in view of the full rank assumption on h, the
setN (x) corresponds to the normal cone associated to
the (adjacent) tangent cone to C at x.

Denote by E , whose elements will be called ex-
tremals, the set of all (x, u, p, µ) ∈ Z ×X ×Uq satis-
fying

i. µα(t) ≥ 0 with µα(t)ϕα(u(t)) = 0 (α ∈
R, t ∈ T );

ii. ṗ(t) = −f∗x(x̃(t))p(t) + L∗x(x̃(t)) (t ∈ T );
iii. p∗(t)fu(x̃(t))) = Lu(x̃(t))) + µ∗(t)ϕ′(u(t))

(t ∈ T );
iv. −[p(t1) + g′(x(t1))

∗] ∈ N (x(t1)).

As in the finite dimensional case, we shall impose
a normality condition in order to have extremality as
a necessary condition for optimality.

An admissible process (x, u) will be said to be
normal relative to S if, given (p, µ) ∈ X × Uq satis-
fying

i. µα(t) ≥ 0 and µα(t)ϕα(u(t)) = 0 (α ∈ R, t ∈
T );

ii. ṗ(t) = −f∗x(x̃(t))p(t) (t ∈ T );
iii. f∗u(x̃(t))p(t) = ϕ′∗(u(t))µ(t) (t ∈ T );
iv. −p(t1) ∈ N (x(t1))

then p ≡ 0. Note that, in this event, also µ ≡ 0.
Under normality assumptions, we have the fol-

lowing well-known result on first order necessary con-
ditions for problem (P) (see, for example, [7]).

Theorem 3 Suppose (x0, u0) solves (P) and is a nor-
mal process of S. Then there exists (p, µ) ∈ X × Uq
such that (x0, u0, p, µ) ∈ E .

Let us now introduce the corresponding set
S1(µ). Given µ ∈ Uq with µα(t) ≥ 0 (α ∈ R, t ∈
T ), let

S1 := S1(µ) = {(x, u) ∈ D |
ϕα(u(t)) ≤ 0

(α ∈ R, µα(t) = 0, t ∈ T ),

ϕβ(u(t)) = 0

(β ∈ R with µβ(t) > 0, or β ∈ Q, t ∈ T )}.
Clearly, we have that

S1 = {(x, u) ∈ S |

ϕα(u(t)) = 0 (α ∈ R, µα(t) > 0, t ∈ T )}.
Applying the definition of normality to this set of

constraints, we obtain the following.

Remark 4 A process (x, u) ∈ S is normal relative to
S1(µ) if, given (q, ν) ∈ X × Uq satisfying

i. να(t) ≥ 0 and να(t)ϕα(u(t)) = 0 (α ∈
R, µα(t) = 0, t ∈ T );

ii. q̇(t) = −f∗x(x̃(t))q(t) (t ∈ T );
iii. f∗u(x̃(t))q(t) = ϕ′∗(u(t))ν(t) (t ∈ T );
iv. −q(t1) ∈ N (x(t1))

then q ≡ 0. In this event, we also have ν ≡ 0.

Let us now prove that, given an extremal, normal-
ity relative to S1 (depending on the extremal) implies
uniqueness of the Lagrange multipliers.

Theorem 5 Let (x0, u0) ∈ S and suppose there ex-
ists (p, µ) ∈ X × Uq such that (x0, u0, p, µ) ∈ E . If
(x0, u0) is normal relative to S1(µ), then (p, µ) is the
unique pair in X × Uq such that (x0, u0, p, µ) ∈ E .

Proof: Suppose (p̄, µ̄) ∈ X × Uq is such that
(x0, u0, p̄, µ̄) ∈ E and set

(q, ν) := (p̄− p, µ̄− µ).

Let us show that (q, ν) satisfies the four conditions of
Remark 4. If α ∈ R with µα(t) = 0, then

να(t) = µ̄α(t) ≥ 0,

να(t)ϕα(u0(t)) = µ̄α(t)ϕα(u0(t)) = 0

and so 4(i) holds. Conditions 4(ii) and 4(iii) hold since

q̇(t) = ˙̄p(t)− ṗ(t) = −f∗x(x̃0(t))q(t) (t ∈ T ),

f∗u(x̃0(t))q(t) = f∗u(x̃0(t))(p̄(t)− p(t))
= ϕ′∗(u0(t))ν(t) (t ∈ T ).

Finally, for some γ̄, γ ∈ Rk,

−q(t1) = −p̄(t1) + p(t1) = h′(x(t1))
∗(γ̄ − γ)

and so −q(t1) ∈ N (x(t1)). Since (x0, u0) is normal
relative to S1(µ), (q, ν) ≡ (0, 0).

Let us now provide an example showing that, con-
trary to the nonlinear mathematical problem posed in
Section 2, the converse of this result may not hold.
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Example 6 Consider the problem of minimizing
I(x, u) =

∫ 1
−1 tu(t)dt subject to

ẋ(t) = u3(t) (t ∈ [−1, 1]), x(−1) = x(1) = 0,

u2(t) ≤ 1 (t ∈ [−1, 1]).

In this case, we have R = {1}, Q = ∅,

h(x) = x, f(t, x, u) = u3,

L(t, x, u) = tu, ϕ(u) = u2 − 1.

Consider the admissible process (x0, u0) ∈ Z given
by

x0(t) :=

{
t+ 1 if t ∈ [−1, 0]

1− t if t ∈ (0, 1].

u0(t) :=

{
1 if t ∈ [−1, 0]

−1 if t ∈ (0, 1].

Suppose (x0, u0, p, µ) ∈ E . By definition of ex-
tremals, we have

µ(t) ≥ 0, ṗ(t) = 0,

3p(t) = t+ 2u0(t)µ(t) (t ∈ [−1, 1]).

Thus p is a constant satisfying

3p =

{
t+ 2µ(t) if t ∈ [−1, 0]

t− 2µ(t) if t ∈ (0, 1].

Since µ(t) ≥ 0 for all t ∈ [−1, 1], from the first rela-
tion we have 3p ≥ 0 and, from the second, 3p ≤ t for
all t ∈ (0, 1] and so p ≤ 0. Thus p ≡ 0 and therefore

µ(t) =

{−t/2 if t ∈ [−1, 0]

t/2 if t ∈ [0, 1].

This implies that (p, µ) is the only pair such that
(x0, u0, p, µ) ∈ E .

Now, consider the pair (q, ν) with q ≡ 2/3 and
ν(t) := u0(t) (t ∈ [−1, 1]). It satisfies 4(i) since

ν(t) ≥ 0 and ν(t)ϕ(u0(t)) = 0

for all t ∈ [−1, 1] such that µ(t) = 0, that is, for
t = 0. Moreover, q̇(t) = 0 and

3q(t) = 2u0(t)ν(t) = 2

for all t ∈ [−1, 1] and so also 4(ii) and 4(iii) hold.
Finally, 4(iv) holds since

−q(1) = −2/3 = h′(x0(1))γ = γ

for some γ ∈ R. Since (q, ν) 6≡ (0, 0), (x0, u0) is not
normal relative to S1(µ).
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